31 research outputs found

    Frequency-dependent photoreactivity in disordered molecular polaritons

    Full text link
    We present a powerful formalism (d-CUT-E) to simulate the ultrafast quantum dynamics of molecular polaritons in the collective strong coupling regime, where a disordered ensemble of N≫106N\gg10^{6} molecules couples to a cavity mode. Notably, we can capture this dynamics with a cavity hosting a single effective\textit{effective} molecule with ∌Nbins\sim N_{bins} electronic states, where Nbinsâ‰ȘNN_{bins}\ll N is the number of bins discretizing the disorder distribution. Using d-CUT-E, we show that in highly disordered ensembles, total reaction yield upon broadband excitation converges to that outside of the cavity. Yet, strong coupling can bestow different reactivities upon individual molecules, leading to changes in reaction yield upon narrowband excitation. Crucially, this effect goes beyond changes in linear absorption due to optical filtering through polaritons.Comment: 13 pages, 12 figure

    47.4: Blue Phosphorescent Organic Light Emitting Device Stability Analysis

    Full text link
    A model based on defect generation by exciton‐polaron annihilation interactions between the emitter and host molecules, in a blue phosphorescent OLED, is shown to fit well with experimental data. A blue PHOLED with (0.15, 0.25) chromaticity is shown to have a half‐life, from 1,000 nits, of 690 hrs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92134/1/1.3069766.pd

    Management of singlet and triplet excitons for efficient white organic light-emitting devices

    Full text link
    Lighting accounts for approximately 22 per cent of the electricity consumed in buildings in the United States, with 40 per cent of that amount consumed by inefficient (similar to 15 lm W-1) incandescent lamps(1,2). This has generated increased interest in the use of white electroluminescent organic light-emitting devices, owing to their potential for significantly improved efficiency over incandescent sources combined with low-cost, high-throughput manufacturability. The most impressive characteristics of such devices reported to date have been achieved in all-phosphor-doped devices, which have the potential for 100 per cent internal quantum efficiency(2): the phosphorescent molecules harness the triplet excitons that constitute three-quarters of the bound electron-hole pairs that form during charge injection, and which (unlike the remaining singlet excitons) would otherwise recombine non-radiatively. Here we introduce a different device concept that exploits a blue fluorescent molecule in exchange for a phosphorescent dopant, in combination with green and red phosphor dopants, to yield high power efficiency and stable colour balance, while maintaining the potential for unity internal quantum efficiency. Two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants, retaining the singlet energy exclusively on the blue fluorescent dopant. Additionally, eliminating the exchange energy loss to the blue fluorophore allows for roughly 20 per cent increased power efficiency compared to a fully phosphorescent device. Our device challenges incandescent sources by exhibiting total external quantum and power efficiencies that peak at 18.7 +/- 0.5 per cent and 37.6 +/- 0.6 lm W-1, respectively, decreasing to 18.4 +/- 0.5 per cent and 23.8 +/- 0.5 lm W-1 at a high luminance of 500 cd m(-2).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62889/1/nature04645.pd

    Data related to manuscript ['Polaron Photoconductivity in the Weak and Strong Light-Matter Coupling Regime', Phys. Rev. Lett. (2020), https://doi.org/10.1103/PhysRevLett.124.177401']

    No full text
    We investigate the potential for cavity-modified electron transfer in a doped organic semiconductor through the photocurrent that arises from exciting charged molecules (polarons). When the polaron optical transition is strongly coupled to a Fabry-Perot microcavity mode, we observe polaron polaritons in the photoconductivity action spectrum and find that their magnitude depends differently on applied electric field than photocurrent originating from the excitation of uncoupled polarons in the same cavity. Crucially, moving from positive to negative detuning causes the upper and lower polariton photocurrents to swap their field dependence, with the more polaron like branch resembling that of an uncoupled excitation. These observations are understood on the basis of a phenomenological model in which strong coupling alters the Onsager dissociation of polarons from their dopant counterions by effectively increasing the thermalization length of the photoexcited charge carrier

    Polaron Photoconductivity in the Weak and Strong Light-Matter Coupling Regime

    No full text
    We investigate the potential for cavity-modified electron transfer in a doped organic semiconductor through the photocurrent that arises from exciting charged molecules (polarons). When the polaron optical transition is strongly coupled to a Fabry-Perot microcavity mode, we observe polaron polaritons in the photoconductivity action spectrum and find that their magnitude depends differently on applied electric field than photocurrent originating from the excitation of uncoupled polarons in the same cavity. Crucially, moving from positive to negative detuning causes the upper and lower polariton photocurrents to swap their field dependence, with the more polaronlike branch resembling that of an uncoupled excitation. These observations are understood on the basis of a phenomenological model in which strong coupling alters the Onsager dissociation of polarons from their dopant counterions by effectively increasing the thermalization length of the photoexcited charge carrier

    Data related to manuscript ['Ultrafast Charge Transfer Dynamics at the Origin of Photoconductivity in Doped Organic Solids', The Journal of Physical Chemistry C (2021), https://doi.org/10.1021/acs.jpcc.1c01990]

    Get PDF
    In spite of their growing importance for optoelectronic devices, the fundamental properties and photophysics of molecularly doped organic solids remain poorly understood. Such doping typically leads to a small fraction of free conductive charges, with most electronic carriers remaining Coulombically bound to the ionized dopant. Recently, we have reported photocurrent for devices containing vacuum-deposited TAPC (1,1-bis(4-bis(4-methylphenyl)aminophenyl)cyclohexane) doped with MoO3, showing that photoexcitation of charged TAPC molecules increases the concentration of free holes that contribute to conduction. Here, we elucidate the excited-state dynamics of such doped TAPC films to unravel the key mechanisms responsible for this effect. We demonstrate that excitation of different electronic transitions in charged and neutral TAPC molecules allows bound holes to overcome the Coulombic attraction to their MoO3 counterions, resulting in an enhanced yield of long-lived free carriers. This is caused by ultrafast back-and-forth shuffling of charges and excitation energy between adjacent cations and neutral molecules, competing with relatively slow nonradiative decay from higher excited states of TAPC‱+. The light-induced generation of conductive carriers requires the coexistence of cationic and neutral TAPC, a favorable energy level alignment, and intermolecular interactions in the solid state
    corecore